UCLA Department of Statistics Statistical Consulting Center

Basic Data Investigation

Tiffany Himmel (Head)

September 20, 2009

Tiffany Himmel (Head)

Basic Data Investigation

UCLA Department of Statistics Statistical Consulting Center

(ロ) (部) (目) (日) (日)

Outline		

To follow along with the R commands, download this file: www.stat.ucla.edu/~tiffany/bootcamp/IrisExampleCode.R

The Data Frame

- 2 Exploring the Data
- 3 Data Subsets
- 4 The Linear Model

 ${\sf Tiffany} \ {\sf Himmel} \ ({\sf Head})$

Basic Data Investigation

The Data Frame

```
> class(iris)
[1] "data.frame"
> names(iris)
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
[5] "Species"
> attach(iris)
```

- A data frame is the most common way to store data.
- names gives you the columns in the frame.
- attach makes the data frame columns available as vectors
- Now species and iris\$species

Tiffany Himmel (Head)

> summary(iris)

Sepal.Length Sepal.Width Petal.Length Pet	tal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min.	. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st	Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Media	ian :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean	n :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd	Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max.	. :2.500
Species	
setosa :50	
versicolor:50	
virginica :50	

- This set of basic summary statistics can be very helpful.
- species is a factor so summary gives a table for it instead.

Tiffany Himmel (Head) Basic Data Investigation

> plot(iris)

Tiffany Himmel (Head)

Basic Data Investigation

> plot(iris)

- Shows the interactions.
- It is a good exploratory plot.
- What do you see in these plots?

Tiffany Himmel (Head)

(ロ) (部) (目) (日) (日)

- > plot(iris[c(1,3)],col=as.numeric(Species))
- > class(Species)
- [1] "factor"

Data Subsets

- > plot(iris[c(1,3)],col=as.numeric(Species))
- > class(Species)
 [1] "factor"
 - subset[c(1,3)] only plots 1st and 3rd variable
 - as.numeric turns factor into numbers (1, 2, 3)
 - col option gives a color value to each data point
 - We will use these two length variables in our walk through.

Tiffany Himmel (Head)

Data Subsets

> plot(iris[c(2,4)],col=as.numeric(Species))

• You will explore the width variables on your own later.

-

> summary(Petal.Length[which(Species=="setosa")])

Min.	1st Qu.	Median	Mean 3rd	Qu.	Max.
1.000	1.400	1.500	1.462 1	.575	1.900

- which is one of the most useful functions in R.
- which returns the locations in the vector for which the expression evaluates to TRUE.

Tiffany Himmel (Head)

Basic Data Investigation

(ロ) (部) (目) (日) (日)

Data Subsets

- > Petal.Length.V<-Petal.Length[-which(Species=="setosa")]
- > Sepal.Length.V<-Sepal.Length[-which(Species=="setosa")]</pre>
 - Now let's look at the non-"setosa" values.
 - The minus in subset removes those entries.

Tiffany Himmel (Head)

> boxplot(boxplot(Petal.Length~Species))

• $y \sim x$ is called a "formula" in R.

Consulting

Tiffany Himmel (Head)

• Plot has many capabilities:

• plot(x, y) or plot(y~x) or plot(object)

Consulting Ucla

Tiffany Himmel (Head) Basic Data Investigation A (1) > 4

- # Using the subsets we build
- > 1<-lm(Petal.Length.V~Sepal.Length.V)
- # Letting lm do it for us
- > 1<-lm(Petal.Length~Sepal.Length, subset=which(Species!="setosa"))
 - 1m stands for linear model.
 - Using the formula Petal.Length~Sepal.Length fits:

 $PL_i = \text{Intercept} + SL_i \cdot \text{slope} + \epsilon_i$

- We solve for the intercept and slope
- ϵ_i is assumed to be $\epsilon_i \sim N(0, 1)$

```
The Linear Model
The Linear Model
    > summary(1)
    Call:
    lm(formula = Petal.Length ~ Sepal.Length, subset = which(Species !=
        "setosa"))
    Residuals:
         Min
                   10
                      Median
                                     30
                                            Max
    -0.96754 -0.32448 -0.03883 0.32768
                                        1.05479
    Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
    (Intercept) -1.55571
                             0.44366 -3.507 0.000687 ***
    Sepal.Length 1.03189
                             0.07046 14.645 < 2e-16 ***
    ___
    Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
    Residual standard error: 0.4647 on 98 degrees of freedom
    Multiple R-squared: 0.6864, Adjusted R-squared: 0.6832
    F-statistic: 214.5 on 1 and 98 DF, p-value: < 2.2e-16
```

> names(1)

[1]	"coefficients"	"residuals"	"effects"	"rank"
[5]	"fitted.values"	"assign"	"qr"	"df.residual"
[9]	"xlevels"	"call"	"terms"	"model"
> nan [1] [5] [9]	nes(summary(l)) "call" "aliased" "adj.r.squared"	"terms" "sigma" "fstatistic"	"residuals" "df" "cov.unscaled"	"coefficients" "r.squared"

- Almost all objects in R have names.
- 1\$coefficients will give a vector of intercept and slope.
- A very helpful way to get values out of a fit.

<ロト < 回 > < 回 > < 回 > < 回 >

- > par(mfrow=c(2,2))
- > plot(1))
- > par(mfrow=c(1,1))

Tiffany Himmel (Head)

- > par(mfrow=c(2,2))
- > plot(1))
- > par(mfrow=c(1,1))
 - These four plots are the default plots we use to examine linear models.
 - Residuals plot shows no pattern
 - Normal QQ plot is linear
 - Use par(mfrow=c(2,2)) to show all 4 plots at once instead of one at a time.
 - Don't forget to go turn this off with par(mfrow=c(1,1)).

> plot(Petal.Length~Sepal.Length,main="Iris Length Data", col=as.numeric(Species))

```
> abline(coef(l),col="purple")
```


Tiffany Himmel (Head)

Basic Data Investigation

UCLA Department of Statistics Statistical Consulting Center

(日)

Data Subsets

The Linear Model

```
> plot(Petal.Length~Sepal.Length,main="Iris Length Data",
col=as.numeric(Species))
```

```
> abline(coef(1),col="purple")
```

- coef(1) gives the intercept and slope calculated for 1.
- abiline adds the fitted line to the current plot.

Tiffany Himmel (Head)

- > setosa.rows<-which(Species=="setosa")</pre>
- > points(Sepal.Length[setosa.rows],Petal.Length[setosa.rows],col="blue")

Image: A match a ma

- > setosa.rows<-which(Species=="setosa")</pre>
- > points(Sepal.Length[setosa.rows],Petal.Length[setosa.rows],col="blue")
 - We can also hold onto the setosa rows.
 - points adds points on top of the current plot like abiline did for the fit line.

Tiffany Himmel (Head)

On Your Own

Things to try:

- Explore other variables.
- Compare linear models.
- Use subsetting any other methods you've learned today.

Want more colors/models/options?

- Try help(lm), help(plot)
- Try googling: "R help subject"

Tiffany Himmel (Head)