UCLA Statistical Consulting Center

R Bootcamp

Introduction to R

Irina Kukuyeva
ikukuyeva@stat.ucla.edu

September 20, 2010
Outline

1. Introduction
2. Preliminaries
3. Working with Vectors and Matrices
4. Data Sets in R
5. Overview of Plots in R
6. R Environment
7. Common Bugs and Fixes
8. R Resources
9. Appendix: Background Information for the Waves Data
Introduction

- What is R?
- What can you do with R?
- What is the catch?

Preliminaries

Working with Vectors and Matrices

Data Sets in R

Overview of Plots in R

R Environment

Common Bugs and Fixes

R Resources

Appendix: Background Information for the Waves Data

Irina Kukuyeva ikukuyeva@stat.ucla.edu
What is R?

“R is a computer language that allows the user to program algorithms and use tools that have been programmed by others.”

Zuur et. al. (2009)
What can you do with R?

You can ...

- do calculations
- perform statistical analysis (using available code)
- create powerful graphics
- write your own functions
What is the catch?

R has a steep learning curve:

- It requires programming...

... but

- the programming used in R is very similar across methods
- a lot has already been done in terms of statistical tools
<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Preliminaries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Working with Vectors and Matrices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Data Sets in R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Overview of Plots in R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Common Bugs and Fixes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>R Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Appendix: Background Information for the Waves Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Irina Kukuyeva ikukuyeva@stat.ucla.edu

Introduction to R

UCLA SCC
Installing R

1. Go to http://cran.r-project.org/ and select either:
 - MacOS X
 - Windows and base

2. Select to download the latest version: 2.11.1 (2010-05-31)

3. Install and Open. The R window should look like this:
Creating Variables

- To use R as a calculator, type 2 + 5 and hit ENTER. (Note how R prints the result.) Your output should look like this:

```
[1] 7
```

- To create variables in R, use either `->` or `=`:

```r
# Approach 1
a=5
a

# Approach 2
a =5; a

# Approach 3
b<-5; b
```
Introduction

Preliminaries

Working with Vectors and Matrices
- Working with Vectors
 - Creating Vectors
 - Some Vector Functions
 - Sub-setting with Vectors
- Working with Matrices
 - Creating Matrices
 - Some Matrix Functions
 - Subsetting with Matrices
- From Vectors to Matrices
 - Creating Matrices from Vectors
- Exercise

Data Sets in R

Overview of Plots in R

R Environment

Common Bugs and Fixes

R Resources

Appendix: Background Information for the Waves Data

Irina Kukuyeva ikukuyeva@stat.ucla.edu
Creating Vectors

- Use the concatenation function `c()`:
  ```
  1  d=c(3,4,7); d
  
  [1] 3 4 7
  ```

- For vectors with equal spacing, use `seq()`:
  ```
  1  e=seq(from=1, to=3, by=0.5); e
  
  [1] 1.0 1.5 2.0 2.5 3.0
  ```

- For vectors of a given length, use `rep()`:
  ```
  1  f=rep(NA, 6); f
  
  [1] NA NA NA NA NA NA
Some Useful Vector Functions 1

- To find the length of the vector, use `length()`:  
  
  ```r
 length(d)
  ```

  ![Output](image)

- To find the maximum value of the vector, use `max()`:  
  
  ```r
 max(d)
  ```

  ![Output](image)
Some Useful Vector Functions II

To find the mean of the vector, use `mean()`:  

```
1 mean(d)
```

[1] 4.666667
Sub-setting with Vectors I

- To find out what is stored in a given element of the vector, use `[ ]`:
  
  ```r
 d[2]
  ```

  `[1] 4`

- To see if any of the elements of a vector equal a certain number, use `==`:
  
  ```r
 d==3
  ```

  `[1] TRUE FALSE FALSE`
Sub-setting with Vectors II

- To see if any of the elements of a vector do not equal a certain number, use `!=:`

```r
1 d != 3
```

[1] FALSE TRUE TRUE

- To delete elements of a vector, use `-` and/or `c()`:

```r
1 e[-c(1,3)]; e
```

[1] 1.5 2.5 3.0
Sub-setting with Vectors III

To obtain the observation number(s) of the vector when a condition is satisfied, use `which()`:

1. `which(d == 4)`

[1] 2

Note: To store the result, type:

1. `a = which(d == 4); a`
To obtain the observation number(s) for the maximum value of the vector, use which() or which.max():

1. `a = which(d == max(d)); a`
2. `b = which.max(d); b`

[1] 3
Creating Matrices

To create a matrix, use the `matrix()` function:

```r
mat <- matrix(10:15, nrow = 3, ncol = 2, byrow = F); mat
```

```
[,1] [,2]
[1,] 10 13
[2,] 11 14
[3,] 12 15
```
Some Useful Matrix Functions 1

- To find the transpose of a matrix, use `t()`:

```r
1 t(mat)

[,1] [,2] [,3]
[1,] 10 11 12
[2,] 13 14 15
```
Some Useful Matrix Functions II

- To multiply two matrices, use `%*%`.

  \textit{Note:} If you use `*` instead, you will be performing matrix multiplication element-wise.

\begin{verbatim}
1  mat%*%t(mat)
\end{verbatim}

\[
\begin{bmatrix}
[1,] & [2,] & [3,]
[1,] & 269 & 292 & 315 \\
[2,] & 292 & 317 & 342 \\
[3,] & 315 & 342 & 369
\end{bmatrix}
\]
Some Useful Matrix Functions III

- To find the dimensions of a matrix, use `dim()`:

  ```r
 dim(mat)
  ```

  [1] 3 2

- Alternatively, we can find the rows and columns of the matrix, by `nrow()` and `ncol()`:

  ```r
 nrow(mat); ncol(mat)
  ```

  [1] 3
  [1] 2
Subsetting with Matrices I

- To see what is stored in the first element of the matrix, use 
  
  ```r
 mat[1,1]
  ```

  
  ```
 [1] 10
  ```

- To see what is stored in the first row of the matrix:

  ```r
 mat[1,]
  ```

  
  ```
 [1] 10 13
  ```
Subsetting with Matrices II

- To see what is stored in the second column of the matrix:

```r
1 mat[, 2]
```

```
[1] 13 14 15
```

- To extract elements 1 and 3 from the second column, use `c()` and `[ ]`:

```r
1 mat[c(1,3), 2]
```

```
[1] 13 15
```
Subsetting with Matrices III

- To extract *everything but* elements 1 and 3 from the second column, use `-c()` and `[ ]`:
  
  ```r
 mat[-c(1,3),2]
  ```

  [1] 14

- To extract the observation containing the maximum value, use `which.max()` and `[ ]`:
  
  ```r
 mat[which.max(mat)]
  ```

  [1] 15

Irina Kukuyeva  ikukuyeva@stat.ucla.edu

Introduction to R  UCLA SCC
Creating Matrices from Vectors

- To stack two vectors, one below the other, use `rbind()`:

  ```r
 mat1 <- rbind(d, d); mat1
  ```

  ```r
 [,1] [,2] [,3]
 d 3 4 7
 d 3 4 7
  ```

- To stack two vectors, one next to the other, use `cbind()`:

  ```r
 mat2 <- cbind(d, d); mat2
  ```

  ```r
 d d d
d 3 3
[1,] 3 3
[2,] 4 4
[3,] 7 7
  ```
Exercise I

Sum all the even rows of column 2 of the $10 \times 10$ matrix that contains the $1^{st}$ 100 numbers.

**Hint:**

*Step 1:* Create a $10 \times 10$ matrix (call it ex1) containing the elements 1 through 100, input elements by row.

*Step 2:* Create an index to store the even rows of a matrix.

**Hint:** Can you use `seq()`?

*Step 3:* Subset ex1 appropriately, i.e. sum over the even rows of column 2 of the matrix.

▶ Solution here.
Introduction

Preliminaries

Working with Vectors and Matrices

Data Sets in R
- Importing Data sets into R
  - Data from the Internet
  - Using Data Available in R
  - Importing Data from Your Computer
  - Importing Data from Your Computer
- Working with Data sets in R
- Exercise

Overview of Plots in R

R Environment

Common Bugs and Fixes

R Resources

Appendix: Background Information for the Waves Data

Irina Kukuyeva  ikukuyeva@stat.ucla.edu

Introduction to R
Data sets into R

Approach 1: Using Data Available in R

1. To use a data set available in one of the R packages, install that package (if needed).

2. Load the package into R, using the `library()` function.
   
   ```r
 library(alr3)
   ```

3. Extract the data set you want from that package, using the `data()` function. In our case, the data set is called UN2.
   
   ```r
 data(UN2)
   ```
Data sets into R

Approach 2a: Importing Data from Your Computer

For data sets that are not an R data set object (i.e. do not have a .RData extension):

1. Check what folder R is working with now:

   ```
 getwd()
   ```

2. Tell R in what folder the data set is stored (if different from (1)). Suppose your data set is on your desktop:

   ```
 setwd("~/Desktop")
   ```

3. Now use the `read.table()` command to read in the data, substituting the name of the file for the website.
Data sets into R

Approach 2b: Importing Data from Your Computer

For data sets that are an R data set object (i.e. have a .RData extension):

- Double click on the file

OR

- Load the data set into R from the console:

1. `load("datasetName.RData")`
Data sets into R

Approach 3a: Data from the Internet

When downloading data from the internet that are not an R data set object, use `read.table()`. In the arguments of the function:

- `header`: if TRUE, tells R to include variables names when importing
- `sep`: tells R how the entries in the data set are separated
  - `sep="","`: when entries are separated by COMMAS
  - `sep="\t"`: when entries are separated by TAB
  - `sep=" "`: when entries are separated by SPACE

```r
1 data<-read.table("http://www.stat.ucla.edu/~vlew/stat130a/datasets/twins.csv", header=TRUE, sep="","")
```

Irina Kukuyeva  ikukuyeva@stat.ucla.edu

Introduction to R

UCLA SCC
When downloading data from the internet that are an R data set object, use `url.show()`:

```r
url.show("http://scc.stat.ucla.edu/page_attachments/0000/0175/WavesBasicR.RData")
```

```
> url.show("http://scc.stat.ucla.edu/page_attachments/0000/0175/WavesBasicR.RData")
trying URL 'http://scc.stat.ucla.edu/page_attachments/0000/0175/WavesBasicR.RData'
Content type 'text/plain' length 1472151 bytes (1.4 Mb)
opened URL
===
downloaded 1.4 Mb

> load("/var/folders/Ey/EyZMNPDpF5GofqWf4lMY1k+++TM/-Tmp-/RtmpIWMEZ4/file76955b3")
```
Working with Data sets in R I

- To use the variable names when working with data, use `attach()`:

  ```R
 attach(UN2)
  ```

- After the variable names have been "attached", to see the variable names, use `names()`:

  ```R
 names(UN2)
  ```

- To see the descriptions of the variables, use `?:`

  ```R
 ?UN2
  ```
Working with Data sets in R II

- To stop referring to variable names directly, use detach() (but not now):

  ```r
 detach(UN2)
  ```

- To get the mean of all the variables in the data set, use mean():

  ```r
 mean(UN2)
  ```

```
logPPgdp logFertility Purban Locality
10.993094 1.018016 55.538860 NA
```

Warning message:
In mean.default(X[[4L]], ...) :
  argument is not numeric or logical: returning NA
To get the variance-covariance matrix of all the (numerical) variables in the data set, use `var()`:

```
var(UN2[, -4])
```

```
 logPPgdp logFertility Purban
logPPgdp 5.6408387 -0.8647205 44.555873
logFertility -0.8647205 0.2887060 -7.630714
Purban 44.5558730 -7.6307145 579.197701
```
Exercise II

Using the data set WavesBasicR.RData, find out how many observations are greater than the mean wave height.

**Hint:**

*Step 1:* Select the third variable for the analysis.

*Step 2:* Calculate the mean for the variable.

*Step 3:* See which observations are greater than the mean (save the output as `out`).

*Step 4:* Calculate the length of `out`.

[Solution here.](http://scc.stat.ucla.edu/page_attachments/0000/0175/WavesBasicR.RData)
1 Introduction

2 Preliminaries

3 Working with Vectors and Matrices

4 Data Sets in R

5 Overview of Plots in R
   • Creating Plots
   • Saving Plots as a PDF
   • Exercise

6 R Environment

7 Common Bugs and Fixes

8 R Resources

9 Appendix: Background Information for the Waves Data
Creating Plots in R

To make a plot in R, you can use `plot()`:

1. `attach(data)`
2. `plot(x, y, main="Coordinates of the Wave Heights")`
Creating Plots in R

To make a histogram in R, you can use `hist()`:

```r
hist(wave_height, xlab="Wave Heights", main="Histogram of Wave Heights")
```

Histogram of Wave Heights

Wave Heights
Frequency
5 10 15 20
0 5000 10000 15000 20000 25000 30000
Creating Plots in R

To add information to the histogram you can use `abline()`:

1. `hist(wave_height, xlab="Wave Heights", main= "Histogram of Wave Heights")`
2. `abline(v=mean(wave_height), col="red", lwd=3)`
Creating Plots in R

- To make a boxplot in R, you can use `boxplot()`:

1. `boxplot(data, xlab = "Variable Names", main = "Boxplot of the Data")`
Creating Plots in R I

To add/highlight points for an existing plot, use `points()`:

```
1 ind <- which(wave_height > 6)
2 plot(x, y, main = "Coordinates of the Wave Heights")
3 points(y[ind] ~ x[ind], col = "red", pch = 19)
4 library(maps)
5 map("world", add = TRUE)
```
Creating Plots in R II

Coordinates of the Wave Heights

Irina Kukuyeva  ikukuyeva@stat.ucla.edu
Saving Plots as a PDF

Note: The files will be saved in the folder specified with `setwd()`.
To save a plot in R as a PDF, you can use `pdf()`:

```
1 pdf("HistWaves.pdf", width=6, height=6)
2 hist(wave_height, xlab="Wave Heights", main="Histogram of Wave Heights")
3 abline(v=mean(wave_height), col="red", lwd=3)
4 dev.off()
```
Exercise III

Using the data set WavesBasicR.RData, find out what hemisphere has the largest waves.

**Hint:**

*Step 1*: Set a threshold for "large".

*Step 2*: Determine which observations are greater than the threshold.

*Step 3*: Highlight these observations in a plot.

Solution here.

\(^2\)http://scc.stat.ucla.edu/page_attachments/0000/0175/WavesBasicR.RData
1 Introduction

2 Preliminaries

3 Working with Vectors and Matrices

4 Data Sets in R

5 Overview of Plots in R

6 R Environment
   - Working with R Objects
   - Saving and Loading R Objects
   - Exporting R Objects to LaTeX
   - Exporting R Objects to Other Formats
   - Saving R Commands

7 Common Bugs and Fixes

8 R Resources

9 Appendix: Background Information for the Waves Data

Irina Kukuyeva  ikukuyeva@stat.ucla.edu
Working with \texttt{R} Objects I

- To see the names of the objects available to be saved (in your current workspace), use \texttt{ls()}.

\begin{verbatim}
ls()
\end{verbatim}

[1] "UN2" "a" "b" "d" "data" "e" "f" "h" "mat1" "mat2"

- To remove objects from your workspace, use \texttt{rm()}.

\begin{verbatim}
rm(d)
ls()
\end{verbatim}

[1] "UN2" "a" "b" "data" "e" "f" "h" "mat1" "mat2"
To remove all the objects from your workspace, type:

1. `rm(list=ls())`
2. `ls()`

`character(0)`
Saving and Loading R Objects

- To save (to the current directory) all the objects in the workspace, use `save.image()`.

  ```r
 save.image("basicR.RData")
  ```

- To load (from the current directory), use `load()`.

  ```r
 load("basicR.RData")
  ```
To export certain R objects to be used in LaTeX, use `xtable()`.

1. `library(xtable)`
2. `xtable(summary(UN2))`
\begin{table}
\centering
\begin{tabular}{rrrr}
\hline
& logPPgdp & logFertility & Purban & Locality \\
\hline
1 & Min. : 6.492 & Min. :0.0000 & Min. : 6.00 & Afghanistan: 1 \\
2 & 1st Qu.: 8.867 & 1st Qu.:0.6366 & 1st Qu.: 35.00 & Albania : 1 \\
3 & Median :10.920 & Median :0.9783 & Median : 57.00 & Algeria : 1 \\
4 & Mean :10.993 & Mean :1.0180 & Mean : 55.54 & Angola : 1 \\
5 & 3rd Qu.:12.938 & 3rd Qu.:1.4493 & 3rd Qu.: 75.00 & Argentina : 1 \\
6 & Max. :15.444 & Max. :2.0794 & Max. :100.00 & Armenia : 1 \\
7 & & & & (Other) :187 \\
\hline
\end{tabular}
\end{table}
Exporting R Objects to LaTeX III

<table>
<thead>
<tr>
<th>logPPgdp</th>
<th>logFertility</th>
<th>Purban</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. : 6.492</td>
<td>Min. :0.0000</td>
<td>Min. : 6.00</td>
<td>Afghanistan: 1</td>
</tr>
<tr>
<td>1st Qu.: 8.867</td>
<td>1st Qu.:0.6366</td>
<td>1st Qu.: 35.00</td>
<td>Albania : 1</td>
</tr>
<tr>
<td>Median :10.920</td>
<td>Median :0.9783</td>
<td>Median : 57.00</td>
<td>Algeria : 1</td>
</tr>
<tr>
<td>Mean :10.993</td>
<td>Mean :1.0180</td>
<td>Mean : 55.54</td>
<td>Angola : 1</td>
</tr>
<tr>
<td>3rd Qu.:12.938</td>
<td>3rd Qu.:1.4493</td>
<td>3rd Qu.: 75.00</td>
<td>Argentina : 1</td>
</tr>
<tr>
<td>Max. :15.444</td>
<td>Max. :2.0794</td>
<td>Max. :100.00</td>
<td>Armenia : 1</td>
</tr>
<tr>
<td>7</td>
<td>(Other):187</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exporting R Objects to Other Formats

To save (to the current directory) certain objects in the workspace to be used in Excel, use `write.csv()`.

```r
write.csv(mat, "mat.csv")
```
Saving R Commands I

- To see all of the commands you typed in an R session, click on the Yellow and Green Tablet

To see all of the commands you typed in an R session, click on the Yellow and Green Tablet.
Saving R Commands II

- To save all of the commands you typed in an R session, use:
  ```
 1 savehistory(file="history.log")
  ```

- Alternatively, use a .r file to store your commands.
  1. Go to: File -> New Document
  2. Type your commands
  3. Save the file as "code.r"
  4. Go back to the R Console
  5. To run all the commands, use:
     ```
 1 source("code.r")
     ```
Introduction

Preliminaries

Working with Vectors and Matrices

Data Sets in R

Overview of Plots in R

R Environment

Common Bugs and Fixes
- Syntax Error
- Trailing +
- Error When Performing Operations

R Resources

Appendix: Background Information for the Waves Data

Irina Kukuyeva ikukuyeva@stat.ucla.edu
Error: syntax error

Possible causes:

- Incorrect spelling (of the function, variable, etc.)
- Including a "+" when copying code from the Console
- Having an extra parenthesis at the end of a function
- Having an extra bracket when subsetting
Trailing +

Possible causes:

- Not closing a function call with a parenthesis
- Not closing brackets when subsetting
- Not closing a function you wrote with a squiggly brace
Error in ... : requires numeric matrix/vector arguments

Possible causes:

1. Objects are data frames, not matrices
2. Elements of the vectors are characters

Possible solutions:

1. Coerce (a copy of) the data set to be a matrix, with the `as.matrix()` command
2. Coerce (a copy of) the vector to have numeric entries, with the `as.numeric()` command
1 Introduction

2 Preliminaries

3 Working with Vectors and Matrices

4 Data Sets in R

5 Overview of Plots in R

6 R Environment

7 Common Bugs and Fixes

8 R Resources
   - Getting Help in R
   - Useful Links for R

9 Appendix: Background Information for the Waves Data

Irina Kukuyeva ikukuyeva@stat.ucla.edu

Introduction to R

UCLA SCC
For help with any function in R, put a question mark before the function name to determine what arguments to use, examples and background information.

```
?plot
```
Online Resources for R I

- Download R: http://cran.stat.ucla.edu/
- Search Engine for R: http://rseek.org
- R Reference Card: http://cran.r-project.org/doc/contrib/Short-refcard.pdf
- R Graph Gallery: http://addictedtor.free.fr/graphiques/
- Statistics with R: http://zoonek2.free.fr/UNIX/48R/all.html
Online Resources for R II

- UCLA Statistical Consulting Center: http://scc.stat.ucla.edu
References

1 Introduction

2 Preliminaries

3 Working with Vectors and Matrices

4 Data Sets in R

5 Overview of Plots in R

6 R Environment

7 Common Bugs and Fixes

8 R Resources

9 Appendix: Background Information for the Waves Data
Appendix: Motivation for the Waves Data

Motivation

In 1992-2003 ships sunk at sea (due to wind and waves) contributed to 30.9 percent of all losses \(^a\).

\(^a\)Extreme Waves, C. Smith, p. 4

Background

Sea surface topography is measured along a track:

- frequency of 13.6GHz (\(K_u\) band) and 5.3 GHz (C band)
- repeat cycle of \(\sim\) 10 days
- footprint of 6 km
Appendix: Overview of the Waves Data

Variable of interest: Significant wave heights (in meters) = the average of the top $\frac{1}{3}$ of the waves in the footprint.

Time interval: April 3 - May 3, 2008

Number of observations: 80,072 $^3$.

$^3$80,072 are a subset of the 5,082,121 ocean observations for the time period. First, every 15th observation was chosen. Then observations with a SWH greater than 3.5 meters were chosen.